Modelling Arterial Pressure Waveforms Using Gaussian Functions and Two-Stage Particle Swarm Optimizer
نویسندگان
چکیده
منابع مشابه
Modelling Arterial Pressure Waveforms Using Gaussian Functions and Two-Stage Particle Swarm Optimizer
Changes of arterial pressure waveform characteristics have been accepted as risk indicators of cardiovascular diseases. Waveform modelling using Gaussian functions has been used to decompose arterial pressure pulses into different numbers of subwaves and hence quantify waveform characteristics. However, the fitting accuracy and computation efficiency of current modelling approaches need to be i...
متن کاملA Parallel Particle Swarm Optimizer
1. Abstract Time requirements for the solving of complex large-scale engineering problems can be substantially reduced by using parallel computation. Motivated by a computationally demanding biomechanical system identification problem, we introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm Algorithm as a means of obtaining increased computat...
متن کاملComplex Optimization Problems Using Highly Efficient Particle Swarm Optimizer
Many engineering problems are the complex optimization problems with the large numbers of global andlocal optima. Due to its complexity, general particle swarm optimization method inclines towards stagnation phenomena in the later stage of evolution, which leads to premature convergence. Therefore, a highly efficient particle swarm optimizer is proposed in this paper, which employ the dynamic t...
متن کاملLearning Fuzzy Network Using Sequence Bound Global Particle Swarm Optimizer
This paper proposes an algorithm for classification by learning fuzzy network with a sequence bound global particle swarm optimizer. The aim of this work can be achieved in two folded. Fold one provides an explicit mapping of an input features from original domain to fuzzy domain with a multiple fuzzy sets and the second fold discusses the novel sequence bound global particle swarm optimizer fo...
متن کاملRobust Particle Swarm Optimizer based on Chemomimicry
Particle swarm optimizers (PSO) were first introduced by Kennedy and Eberhart as stochastic algorithms which seek optimal solutions to functions through the use of swarm intelligence [1]. The main theme of PSO is that many particles are allowed to explore a function space. As each particle relocates it inputs its coordinates into the objective function for evaluation. Particles are assigned dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BioMed Research International
سال: 2014
ISSN: 2314-6133,2314-6141
DOI: 10.1155/2014/923260